End-to-end Driving Controls Predictions from Images
نویسندگان
چکیده
Autonomous driving is a promising technology to improve transportation in our society. In this project we propose an end-to-end approach to learn how to steer a car autonomously from images. We trained Convolutional Neural Networks (CNNs) to output steering wheel angle commands from front camera images centered on the road. Finally, we explored some smoothing of the predictions by exploiting the temporal structure of the data.
منابع مشابه
Fast Recurrent Fully Convolutional Networks for Direct Perception in Autonomous Driving
Deep convolutional neural networks (CNNs) have been shown to perform extremely well at a variety of tasks including subtasks of autonomous driving such as image segmentation and object classification. However, networks designed for these tasks typically require vast quantities of training data and long training periods to converge. We investigate the design rationale behind end-to-end driving n...
متن کاملUnsupervised Real-to-Virtual Domain Unification for End-to-End Highway Driving
In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. Raw images and existing intermediate representation...
متن کاملBrain Inspired Cognitive Model with Attention for Self-Driving Cars
Perception-driven approach and end-to-end system are two major vision-based frameworks for self-driving cars. However, it is difficult to introduce attention and historical information of autonomous driving process, which are the essential factors for achieving human-like driving into these two methods. In this paper, we propose a novel model for self-driving cars named brain-inspired cognitive...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملExtracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016